Hydraulic failure of granular materials with artificial cementation
Abstract
This paper presents an experimental study on the hydraulic failure of a submerged layer of cemented soil stressed by a localized upward water flow. Different mixtures of glass beads bonded with solid paraffin bridges were used as artificial material for the cemented granular soil. Variations in the cementation strength of the material were carefully introduced with different particle sizes and binder contents. The hydraulic fracture tests were then carried out with an upward flow injected at a controlled rate through a small section at the bottom of the samples. From a phenomenological perspective, the results reveal the existence of at least three modes of failure for a cemented soil layer: (1) overall block uplift, (2) block rupture by median crack at the inflow zone, and (3) progressive excavation of a fluidized path along the walls. The critical flow rate and pressure drop conditions at failure have been carefully quantified for the different mixtures and layer thicknesses, leading to a fair estimation of the hydraulic resistance of the samples, which here is found to be virtually independent of the grain size. However, the test results also showed inconsistent failure modes precluding so far the derivation of a simple phase diagram. Nevertheless, it was possible to rationalize all the measured data by employing appropriate modifications of the classical dimensionless numbers that describe the fluidization of purely frictional materials, whereby the cementation strength of the soil is quantified at the microscale through the yield tensile force of the intergranular bonds. Irrespective of its subsequent development, during which boundary conditions obviously play a major role, the initiation of the instability appears to take place very locally at the inlet when the drag force induced by the flow overcomes the cementation strength of the paraffin bonds. The results of this study thus appear to endorse the extension of the dimensional relationships of particulate systems in interaction with fluid flows to the case of cemented granular materials, in a similar vein as in recent previous studies.
Domains
Engineering Sciences [physics]Origin | Files produced by the author(s) |
---|