Global patterns of tree wood density - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Global Change Biology Année : 2024

Global patterns of tree wood density

Hui Yang
Vitus Benson
Jens Kattge
Zbigniew Karaszewski
  • Fonction : Auteur
Krzysztof Stereńczak
  • Fonction : Auteur
Álvaro Moreno‐martínez
  • Fonction : Auteur

Résumé

Wood density is a fundamental property related to tree biomechanics and hydraulic function while playing a crucial role in assessing vegetation carbon stocks by linking volumetric retrieval and a mass estimate. This study provides a high‐resolution map of the global distribution of tree wood density at the 0.01° (~1 km) spatial resolution, derived from four decision trees machine learning models using a global database of 28,822 tree‐level wood density measurements. An ensemble of four top‐performing models combined with eight cross‐validation strategies shows great consistency, providing wood density patterns with pronounced spatial heterogeneity. The global pattern shows lower wood density values in northern and northwestern Europe, Canadian forest regions and slightly higher values in Siberia forests, western United States, and southern China. In contrast, tropical regions, especially wet tropical areas, exhibit high wood density. Climatic predictors explain 49%–63% of spatial variations, followed by vegetation characteristics (25%–31%) and edaphic properties (11%–16%). Notably, leaf type (evergreen vs. deciduous) and leaf habit type (broadleaved vs. needleleaved) are the most dominant individual features among all selected predictive covariates. Wood density tends to be higher for angiosperm broadleaf trees compared to gymnosperm needleleaf trees, particularly for evergreen species. The distributions of wood density categorized by leaf types and leaf habit types have good agreement with the features observed in wood density measurements. This global map quantifying wood density distribution can help improve accurate predictions of forest carbon stocks, providing deeper insights into ecosystem functioning and carbon cycling such as forest vulnerability to hydraulic and thermal stresses in the context of future climate change.
Fichier principal
Vignette du fichier
Yang_etal_Global Change Biology_30_3.pdf (8.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04653786 , version 1 (19-07-2024)

Licence

Identifiants

Citer

Hui Yang, Siyuan Wang, Rackhun Son, Hoontaek Lee, Vitus Benson, et al.. Global patterns of tree wood density. Global Change Biology, 2024, 30 (3), ⟨10.1111/gcb.17224⟩. ⟨hal-04653786⟩
65 Consultations
22 Téléchargements

Altmetric

Partager

More