Integrative approach of muscular development to describe the maturation process related to the neonatal survival
Approche intégrative du développement musculaire afin de décrire le processus de maturation en lien avec la survie néonatale
Résumé
Over the last decades, some omics data integration studies have been developed to participate in the detailed description of complex traits with socio-economic interests. In this context, the aim of the thesis is to combine different heterogeneous omics data to better describe and understand the last third of gestation in pigs, period influencing the piglet mortality at birth. In the thesis, we better defined the molecular and cellular basis underlying the end of gestation, with a focus on the skeletal muscle. This tissue is specially involved in the efficiency of several physiological functions, such as thermoregulation and motor functions. According to the experimental design, tissues were collected at two days of gestation (90 or 110 days of gestation) from four fetal genotypes. These genotypes consisted in two extreme breeds for mortality at birth (Meishan and Large White) and two reciprocal crosses. Through statistical and computational analyses (descriptive analyses, network inference, clustering and biological data integration), we highlighted some biological mechanisms regulating the maturation process in pigs, but also in other livestock species (cattle and sheep). Some genes and proteins were identified as being highly involved in the muscle energy metabolism. Piglets with a muscular metabolism immaturity would be associated with a higher risk of mortality at birth. A second aspect of the thesis was the imputation of missing individual row values in the multidimensional statistical method framework, such as the multiple factor analysis (MFA). In our context, MFA was particularly interesting in integrating data coming from the same individuals on different tissues (two or more). To avoid missing individual row values, we developed a method, called MI-MFA (multiple imputation - MFA), allowing the estimation of the MFA components for these missing individuals.
Depuis plusieurs années, des projets d'intégration de données omiques se sont développés, notamment avec objectif de participer à la description fine de caractères complexes d'intérêt socio-économique. Dans ce contexte, l'objectif de cette thèse est de combiner différentes données omiques hétérogènes afin de mieux décrire et comprendre le dernier tiers de gestation chez le porc, période influençant la mortinatalité porcine. Durant cette thèse, nous avons identifié les bases moléculaires et cellulaires sous-jacentes de la fin de gestation, en particulier au niveau du muscle squelettique. Ce tissu est en effet déterminant à la naissance car impliqué dans l'efficacité de plusieurs fonctions physiologiques comme la thermorégulation et la capacité à se déplacer. Au niveau du plan expérimental, les tissus analysés proviennent de foetus prélevés à 90 et 110 jours de gestation (naissance à 114 jours), issus de deux lignées extrêmes pour la mortalité à la naissance, Large White et Meishan, et des deux croisements réciproques. Au travers l'application de plusieurs études statistiques et computationnelles (analyses multidimensionnelles, inférence de réseaux, clustering et intégration de données), nous avons montré l'existence de mécanismes biologiques régulant la maturité musculaire chez les porcelets, mais également chez d'autres espèces d'intérêt agronomique (bovin et mouton). Quelques gènes et protéines ont été identifiées comme étant fortement liées à la mise en place du métabolisme énergétique musculaire durant le dernier tiers de gestation. Les porcelets ayant une immaturité du métabolisme musculaire seraient sujets à un plus fort risque de mortalité à la naissance. Un second volet de cette thèse concerne l'imputation de données manquantes (tout un groupe de variables pour un individu) dans les méthodes d'analyses multidimensionnelles, comme l'analyse factorielle multiple (AFM) (ou multiple factor analysis (MFA)). Dans notre contexte, l'AFM fut particulièrement intéressante pour l'intégration de données d'un ensemble d'individus sur différents tissus (deux ou plus). Afin de conserver ces individus manquants pour tout un groupe de variables, nous avons développé une méthode, appelée MI-MFA (multiple imputation - MFA), permettant l'estimation des composantes de l'AFM pour ces individus manquants.
Origine | Version validée par le jury (STAR) |
---|