GenoSNP: a variational Bayes within-sample SNP genotyping algorithm that does not require a reference population - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue BMC Bioinformatics Année : 2008

GenoSNP: a variational Bayes within-sample SNP genotyping algorithm that does not require a reference population

Résumé

Current genotyping algorithms typically call genotypes by clustering allele-specific intensity data on a single nucleotide polymorphism (SNP) by SNP basis. This approach assumes the availability of a large number of control samples that have been sampled on the same array and platform. We have developed a SNP genotyping algorithm for the Illumina Infinium SNP genotyping assay that is entirely within-sample and does not require the need for a population of control samples nor parameters derived from such a population. Our algorithm exhibits high concordance with current methods and >99% call accuracy on HapMap samples. The ability to call genotypes using only within-sample information makes the method computationally light and practical for studies involving small sample sizes and provides a valuable independent quality control metric for other population-based approaches.
Fichier principal
Vignette du fichier
2008_Giannoulatou_Bioinformatics_1.pdf (3.95 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02666065 , version 1 (31-05-2020)

Licence

Identifiants

Citer

Eleni Giannoulatou, Christopher Yau, Stefano Colella, Jiannis Ragoussis, Chrisopher C. Holmes. GenoSNP: a variational Bayes within-sample SNP genotyping algorithm that does not require a reference population. BMC Bioinformatics, 2008, 24 (19), pp.2209-2214. ⟨10.1093/bioinformatics/btn386⟩. ⟨hal-02666065⟩
9 Consultations
93 Téléchargements

Altmetric

Partager

More