On evidential clustering with partial supervision - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Communication Dans Un Congrès Année : 2018

On evidential clustering with partial supervision

Résumé

This paper introduces a new semi-supervised evidential clustering algorithm. It considers label constraints and exploits the evidence theory to create a credal partition coherent with the background knowledge. The main characteristics of the new method is its ability to express the uncertainties of partial prior information by assigning each constrained object to a set of labels. It enriches previous existing algorithm that allows the preservation of the uncertainty in the constraint by adding the possibility to favor crisp decision following the inherent structure of the dataset. The advantages of the proposed approach are illustrated using both a synthetic dataset and a real genomics dataset.
Fichier principal
Vignette du fichier
antoine2018evidential.pdf (211.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02787897 , version 1 (26-01-2023)

Identifiants

Citer

Violaine Antoine, Kévin Gravouil, Nicolas Labroche. On evidential clustering with partial supervision. BELIEF, Sep 2018, Compiègne, France. pp.14-21, ⟨10.1007/978-3-319-99383-6_3⟩. ⟨hal-02787897⟩
176 Consultations
32 Téléchargements

Altmetric

Partager

More