Environmental control of land-atmosphere CO 2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Tellus B - Chemical and Physical Meteorology Année : 2020

Environmental control of land-atmosphere CO 2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types

Bernard Longdoz
  • Fonction : Auteur
  • PersonId : 1204461
Daniel Berveiller
Nicolas Delpierre
Jean-Marc Bonnefond
  • Fonction : Auteur
  • PersonId : 1202758
Christophe Chipeaux
  • Fonction : Auteur
  • PersonId : 1207124
Aurore Brut
  • Fonction : Auteur
  • PersonId : 917061
Tiphaine Tallec
  • Fonction : Auteur
  • PersonId : 1082872
Eric Ceschia

Résumé

(2020) Environmental control of land-atmosphere CO 2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types, ABSTRACT We assembled homogenized long-term time series, up to 19 years, of measurements of net ecosystem exchange of CO 2 (NEE) and its partitioning between gross primary production (GPP) and respiration (R eco) for five different ecosystems representing the main plant functional types (PFTs) in France. Part of these data was analyzed to determine the influence of the main environmental variables on carbon fluxes between temperate ecosystems and the atmosphere, and to investigate the temporal patterns of their variations. A multi-temporal statistical analysis of the time series was conducted using random forest (RF) and wavelet coherence approaches. The RF analysis showed that, in all ecosystems, the incident solar radiation was highly correlated with GPP and that GPP was better correlated with the temporal variations of NEE than R eco. The air temperature was the second most important driver in ecosystems with seasonal foliage, i.e., deciduous forest, cropland and grassland; whereas variables related to air or soil drought were prominent in evergreen forest sites. The environmental control on CO 2 fluxes was tighter at high frequency suggesting an increased resilience to environmental variations at longer time spans. The spectral analysis performed on three of the five sites selected revealed contrasting temporal patterns of the cross-coherence between CO 2 fluxes and climate variables among ecosystems; these were related to the respective PFT, management and soil conditions. In all PFTs, the power spectrum of GPP was well correlated with NEE and clearly different from R eco. The spectral correlation analysis showed that the canopy phenology and disturbance regime condition the spectral correlation patterns of GPP and R eco with the soil moisture and atmospheric vapour deficit.
Fichier principal
Vignette du fichier
2020_moreaux_tellus.pdf (3.97 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02900349 , version 1 (16-07-2020)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

Virginie Moreaux, Bernard Longdoz, Daniel Berveiller, Nicolas Delpierre, Eric Dufrêne, et al.. Environmental control of land-atmosphere CO 2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types. Tellus B - Chemical and Physical Meteorology, 2020, 72 (1), pp.1-25. ⟨10.1080/16000889.2020.1784689⟩. ⟨hal-02900349⟩
204 Consultations
70 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More