Parametric versus nonparametric: The fitness coefficient - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Scandinavian Journal of Statistics Année : 2020

Parametric versus nonparametric: The fitness coefficient

Résumé

Olkin and Spiegelman introduced a semiparametric estimator of the density defined as a mixture between the maximum likelihood estimator and the kernel density estimator. Due to the absence of any leave-one-out strategy and the hardness of estimating the Kullback–Leibler loss of kernel density estimate, their approach produces unsatisfactory results. This article investigates an alternative approach in which only the kernel density estimate is modified. From a theoretical perspective, the estimated mixture parameter is shown to converge in probability to one if the parametric model is true and to zero otherwise. From a practical perspective, the utility of the approach is illustrated on real and simulated data sets.
Fichier principal
Vignette du fichier
2020_Mazo_Scandinavian Journal of Statisitcs.pdf (1.31 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03270164 , version 1 (24-06-2021)

Licence

Identifiants

Citer

François Portier, Gildas Mazo. Parametric versus nonparametric: The fitness coefficient. Scandinavian Journal of Statistics, 2020, 10 (1), ⟨10.1111/sjos.12495⟩. ⟨hal-03270164⟩
59 Consultations
82 Téléchargements

Altmetric

Partager

More