Interfacial organization and phase behavior of mixed galactolipid-DPPC-phytosterol assemblies at the air-water interface and in hydrated mesophases - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Colloids and Surfaces B: Biointerfaces Année : 2022

Interfacial organization and phase behavior of mixed galactolipid-DPPC-phytosterol assemblies at the air-water interface and in hydrated mesophases

Résumé

The structural behavior of model assemblies composed of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the two main galactolipids found in plants, was investigated at the air/water interface and in aqueous dispersion. To approach the composition of the natural photosynthetic membranes, tunable Langmuir model membrane of galactolipids (GL) were used, and were complexified to form either heterogenous binary or ternary assemblies of GL, phospholipids (PL), and phytosterols (pS). The impact of pS, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or both on the structural properties of GL membrane was studied. The nature of the interactions between the different molecules was investigated using biophysical characterizations (ellipsometry, tensiometry, atomic force microscopy). In addition, the phase behavior was determined by SAXS analysis on the model assemblies in aqueous dispersions. Results revealed the good interfacial stability of these specific plant membrane lipids. The morphology of the GL film was characteristic of a fluid phase, with an interfacial roughness induced by the intercalation of monogalactosyl and digalactosyl polar heads of MGDG and DGDG, respectively. A phase heterogeneity in the monolayer was induced by the addition of DPPC and/or pS, which resulted in the modification of galactolipid organization and headgroup interactions. These structural changes were confirmed by SAXS analysis, showing more favorable interactions between MGDG and DPPC than between DGDG and DPPC in aqueous dispersion. This phenomenon was exacerbated in the presence of pS. HIGHLIGHTS • Plant polar lipids formed stable monolayers at the air/water interface. • Phytosterols reduced the lateral elasticity of galactolipid and DPPC monolayer. • DPPC has affected MGDG-DGDG interactions. • Results highlighted preferential phase miscibility between DPPC and MGDG.
Fichier principal
Vignette du fichier
Global_manuscript_kergomard_revisions.pdf (1.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03702655 , version 1 (23-06-2022)

Identifiants

Citer

Jeanne Kergomard, Frédéric Carrière, G. Paboeuf, Franck Artzner, Nathalie Barouh, et al.. Interfacial organization and phase behavior of mixed galactolipid-DPPC-phytosterol assemblies at the air-water interface and in hydrated mesophases. Colloids and Surfaces B: Biointerfaces, 2022, 217, pp.112646. ⟨10.1016/j.colsurfb.2022.112646⟩. ⟨hal-03702655⟩
103 Consultations
136 Téléchargements

Altmetric

Partager

More