The effects of spring feeding strategy on pasture productivity, sward quality, and animal performance within intensive pasture-based dairy systems
Résumé
The objective of this research was to evaluate how different feeding strategies based on various pasture availability (PA) treatments within intensive seasonal production systems affected pasture production and utilization, sward quality, and the milk production, body weight (BW), and body condition score (BCS) of dairy cows. The performance data were obtained from a 3-yr experiment conducted previously (2018–2020, inclusive). In total, records from 208 spring-calving dairy cows were available for analysis. The animals were randomly allocated to 1 of 3 PA grazing treatments in spring that varied in average pasture cover (measured as herbage mass available above 3.5 cm) that was established via different pasture management strategies in the previous autumn. Thus, the opening average pasture cover across all paddocks on February 1 was 1,100 kg of dry matter (DM)/ha for high pasture availability (HPA), 880 for medium pasture availability (MPA), and 650 for low pasture availability (LPA), respectively. The measurements were taken over an 8-wk period during the first grazing rotation in spring, commencing on February 16 (±2 d) and finishing when all paddocks were grazed once on April 12 (±5 d). Paddocks that were part of the HPA treatment showed the highest pregrazing herbage masses and pregrazing sward heights (1,645 kg of DM/ha and 8.2 cm, respectively) compared with MPA (1,412 kg of DM/ha and 7.5 cm, respectively) and LPA (1,170 kg of DM/ha and 6.9 cm, respectively). Owing to the differences in PA, daily herbage allowance was greatest for HPA (11.7 kg of DM/cow), intermediate for MPA (10.2 kg of DM/cow), and lowest for LPA (8.8 kg of DM/cow), with the remaining feed deficit composed of additional daily grass silage supplementation (0.8, 1.5, and 2.8 kg of DM/cow for HPA, MPA, and LPA, respectively), while the daily concentrate and daily total feed allowance were equal between treatments during spring (2.7 and 15.0 kg of DM/cow). Despite salient differences in fresh pasture used, complementing pasture intake with grass silage did not affect daily or cumulative milk, solids-corrected milk, fat, or protein yield or milk constituents. Similarly, BW and BCS were also unaffected by PA treatment. The results highlight the importance of high spring pasture utilization and grazing efficiency achievable with higher pregrazing herbage masses, which also allow larger animal intakes from grazed pasture as the cheapest feed source during spring. Moreover, targeting an adequate pasture supply at the commencement of calving increases the grazing days per hectare and lowers the requirement for supplementary feed on farm, particularly when facing increasing variability in climatic conditions.