Pesticide-free arable cropping systems: performances, learnings, and technical lock-ins from a French long-term field trial - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Agronomy for Sustainable Development Année : 2023

Pesticide-free arable cropping systems: performances, learnings, and technical lock-ins from a French long-term field trial

Résumé

To ensure regular and high yields, current agriculture is based on intensive use of pesticides and fertilizers, which are detrimental to the environment and human health. Moreover, as pest resistance to pesticides increases, and more and more pesticides are taken off the market, national and European policies are becoming powerful drivers to deliver pesticide-free farming systems. Whereas numerous studies have compared organic versus conventional systems, our study assessed, for the first time, the performances of a pesticide-free arable cropping system (No-Pesticide), using synthetic fertilizers, specifically designed to produce high yields and meet environmental goals. This system was compared with an input-based cropping system designed with the same environmental targets (PHEP: productive with high environmental performances) in an 11-year field trial in France (Paris Basin). Banning pesticides did not result in a significant average yield gap (in GJ.ha −1 .year −1 or in kg N.ha −1 .year −1) calculated over the crop sequence. Yet, some crops' yields significantly decreased, due either to pest damages, or to limited nitrogen nutrition. In the No-Pesticide system, the mycotoxin content of cereal grains was lower than the regulatory threshold, and the average wheat protein content was higher than the required standard for baking. Indirect energy consumption, total greenhouse gas emissions, number of technical operations, nitrogen fertilizer amounts, and treatment frequency indexes were significantly lower compared to the PHEP system. Conversely, results showed significantly higher direct energy consumption, direct greenhouse gas emissions, and number of work hours for weed control. We identify highly effective agricultural strategies to avoid pesticide use (e.g., widely diverse and long crop sequence; introduction of hemp) and pinpoint several technical lock-ins hampering steady production in pesticide-free systems. We argue that more experiments should be undertaken to deliver technical knowledge for managing major or orphan species within pesticide-free systems, and to provide supplementary results, including economic and social performances. Keywords Agroecology • Greenhouse gas emissions • Energy consumption • Yield • Grain quality • Field assessment • Integrated pest management • Agricultural practices
Fichier principal
Vignette du fichier
Colnenne_David_2023.pdf (1.26 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Licence : CC BY - Paternité

Dates et versions

hal-04320223 , version 1 (04-12-2023)

Identifiants

Citer

Caroline Colnenne-David, Marie-Hélène Jeuffroy, Gilles Grandeau, Thierry Doré. Pesticide-free arable cropping systems: performances, learnings, and technical lock-ins from a French long-term field trial. Agronomy for Sustainable Development, 2023, 43, ⟨10.1007/s13593-023-00931-7⟩. ⟨hal-04320223⟩
22 Consultations
10 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More