Identification of Streptococcus thermophilus Genes Specifically Expressed under Simulated Human Digestive Conditions Using R-IVET Technology
Résumé
Despite promising health effects, the probiotic status of Streptococcus thermophilus, a lactic acid bacterium widely used in dairy industry, requires further documentation of its physiological status during human gastrointestinal passage. This study aimed to apply recombinant-based in vivo technology (R-IVET) to identify genes triggered in a S. thermophilus LMD-9 reference strain under simulated digestive conditions. First, the R-IVET chromosomal cassette and plasmid genomic library were designed to positively select activated genes. Second, recombinant clones were introduced into complementary models mimicking the human gut, the Netherlands Organization for Applied Scientific Research (TNO) gastrointestinal model imitating the human stomach and small intestine, the Caco-2 TC7 cell line as a model of intestinal epithelium, and anaerobic batch cultures of human feces as a colon model. All inserts of activated clones displayed a promoter activity that differed from one digestive condition to another. Our results also showed that S. thermophilus adapted its metabolism to stressful conditions found in the gastric and colonic competitive environment and modified its surface proteins during adhesion to Caco-2 TC7 cells. Activated genes were investigated in a collection of S. thermophilus strains showing various resistance levels to gastrointestinal stresses, a first stage in the identification of gut resistance markers and a key step in probiotic selection.
Domaines
Sciences du Vivant [q-bio]Origine | Fichiers produits par l'(les) auteur(s) |
---|