Communication Dans Un Congrès Année : 2022

Characterizing microbial interactions in controlled and natural microbial communities

Résumé

The massive development and use of multi omics data permits a better understanding of complex microbial ecosystems at the metabolic level. However, this data and their integration varies depending on the size and characteristics of the considered ecosystems. In this talk, I will discuss of two different approaches applied respectively to a controlled microbial community and natural communities in order to reveal putative bacterium-bacterium interactions. I will first describe how numerical optimisation of metabolic models constrained by genomics and metatranscriptomics data can accurately describe a cheese starter community. I will then detail a discrete method based on only genomic data aiming to characterize the competition and cooperation potentials in natural communities.
Fichier principal
Vignette du fichier
CMM_ML.pdf (3.27 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03857848 , version 1 (17-11-2022)
hal-03857848 , version 2 (09-12-2022)

Identifiants

  • HAL Id : hal-03857848 , version 2

Citer

Maxime Lecomte, Simon Labarthe, David James Sherman, Hélène Falentin, Clémence Frioux. Characterizing microbial interactions in controlled and natural microbial communities. Workshop SymBioDiversity, May 2022, Santiago, Chile. ⟨hal-03857848v2⟩
62 Consultations
39 Téléchargements

Partager

More